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Abstract

Post-translational modification (PTM) is a biological mechanism that expands protein functionality.
Among the PTMs, lysine succinylation substantially alter the structural and functional properties of
cellular proteins. This PTM is suspected to be implicated in numerous diseases regarding heart and
blood circulation. Recent proteomic studies spotted it in wide variety of both prokaryotic and eukaryotic
organisms. In reality, little is known about this particular PTM and its implications. The experimental
detection of lysine succinylation is expensive, time consuming and labor extensive. Which is why fast and
robust computational tools are absolutely necessary to process rapidly increasing number of sequenced
proteins and correctly categorize the concealed lysine residues. In this paper, we propose an efficient
model that optimizes different sequence based representations to approximate discriminating function.
This model reflects the efficacy of sequence information by achieving 87.3% accuracy, 94.9% sensitivity,
81.1% specificity, 0.76 Matthews correlation coefficient, 0.94 AUROC and 0.91 AUPR, which is comparable
performance to state-of-the-art predictors in lysine succinylated site prediction.

1 Introduction
Proteins undergo a number of covalent and enzymatic modification
referred as post-translational modification (PTM) following their bio-
synthesis by ribosomes. Post-translational modifications change the
structural and functional properties of both prokaryotic and eukaryotic
cellular proteins by modifying existing functional groups or by introducing
new functional groups forming covalent bond with amino acids in proteins
[1]. Among all the α-Amino acids, lysine (Lys) is a frequent target to
PTMs due to its role in constructing the spatial structure of proteins
and regulating the protein functions [2]. A number a PTMs target lysine
such as phosphorylation, acetylation, hydroxylation, methylation and
ubiquitylation. Among these PTMs, succinylation is a major one, where
a succinyl group (-CO-CH2-CH2-CO-) is transferred from succinyl-
CoA to the specific lysine residue of the substrate protein [3]. Lysine
succinylation is considered to orchestrate comparatively more substantial
change to protein conformation, stability and physico-chemical properties
as succinylation transfers larger structural moiety compared to methylation

and acetylation [2]. Lysine succinylation has been reported to affect
enzymes involved in mitochondrial metabolism including amino acid
degradation, tricarboxylic acid cycle (TCA) and fatty acid metabolism
[4]. Succinylated lysine sites were also found present in histones possibly
regulating chromatin structures and functions [5]. This particular PTM is
also suspected to be implicated in numerous diseases, such as hepatic,
cardiac, and pulmonary diseases [6]. Despite such importance, full impact
of lysine succinylation on cellular physiology is still unknown.

Succinylation was first detected by mass spectrometry and protein
sequence alignment [7] [8]. Zhang et al. identified lysine succinylation
as a new PTM and reported in 2011 [9]. Since then various large-
scale proteomic methods are used to identify lysine succinylation in
organisms, including pathogenic bacteria, protozoan and parasites, fungi
, mammalian cells including human and mouse, and also in plants
[10][2][11][12][13][14]. The amount of protein examined and lysine
succinylation sites reported is still low with respect to its presence
in cells of so many different species. Primarily because conventional
methods require costly experimental setup along with labor-intensive
and time-consuming experimental verification of succinylated substrates.
Experimental detection demands more resource as post-translational
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networks get complex. To overcome this challenge, accurate high
throughput in silico tools are highly demanded.

In recent years, a number of efficient computational tools have been
developed to predict lysine succinylation sites. Zhao et al., proposed
SucPred [15], a pioneering tool, based on SVM classifier trained in a
positive sample only semi-supervised learning strategy (Psol) [16]. In
their work, each lysine residue is described in respect of four sequence
based feature namely the auto-correlation functions (ACF), the encoding
based on grouped weight (EBGW), the normalized van der waals volume
(VDWV) and the position weight amino acids composition (WAAC).
Another pioneering work, SVM based predictor SuccFind [17] explored
amino acid composition based feature AAC and CKSAAP encoding,
physico-chemical features of amino acids adjacent to succinylation sites
(AAindex) and evolutionary features through local sequence clustering. In
an attempt to capture the intrinsic information of protein sequence, iSuc-
PseAAC [18] incorporated the position specific amino acid propensity
(PSAAP) into the general form of pseudo amino acid composition whereas
iSuc-PseOpt [19] incorporated the sequence-coupling effects into the
general pseudo amino acid composition. The former employed SVM
classifier while the later is random forest based. pSuc-Lys [20] followed
the methodology of iSuc-PseOpt but adopted ensemble random forest
algorithm to construct model. Although iSuc-PseOpt and the most of
the recent predictors used dataset collected from the CPLM database
[21], SuccinSite[22] and SuccinSite2.0 [23] tested a larger dataset.
Both of them are RF-based predictors. SuccinSite2.0 used profle-based
composition of k-spaced amino acid pairs (pbCKSAAP) and orthogonal
binary features while SuccinSite utilized three informative encoding
features, i.e., CKSAAP, binary encoding and AAindex physico-chemical
features. Succinsite2.0 also made an attempt to provide species specific
insight. Among the later works, SucStruct [24] and PSSM-Suc [25]
predictors are based on pruned C4.5 decision tree algorithm. SucStruct
considered a comprehensive set of structural features to discriminate
between succinylated and non-succinylated lysine residues while PSSM-
Suc captured evolutionary information through profile bigrams extracted
from position specific scoring matrix(PSSM). More recent predictor,
SSEvolSuc [26] subsumed both structural and evolutionary features.
They calculated the matrix of transition probabilities of each amino
acid in protein segment to the three secondary structure conformations
(helix, strand and coil) as well as computed the PSSM. Then extracted
profile bigrams from both matrices as features to implement an Adaboost
algorithm with decision stumps as weak classifiers.

Studying the previous works, we note that there is still plenty of scope
to improve in terms of performance and efficiency. Most of state-of-the-art
predictors employed unilateral features without considering the possibility
of containing redundant and noisy information risking loss of some
other potential value information. Some feature extraction techniques
require complex intermediate step. This intermediate step can be time
consuming and susceptible to error. For example, PSSM derived features
requires obtaining lengthy and time-consuming alignments against large
sequence databases which cannot be speed up without losing predictive
value [27]. To overcome these issues, we explored a heavy set of simple
features extracted from the protein sequence only. The representative
set of features was optimised in a two step feature selection strategy to
retain relevant sequence derived information. Our final model provided
predictive performance comparable to the recent state-of-the-art predictors
achieving 87.3% accuracy, 94.9% sensitivity, 81.1% specificity and 0.76
MCC value as well as area under the ROC curve value of 0.94. Overall
performance along with high sensitivity of our predictor establishes itself
as a promising tool for both to identify lysine succinylated sites and to cut
down on number of procedural steps for experimental validation.

2 Materials & Methods

2.1 Dataset

We collected a dataset from two freely accessible PTM databases CPLA 1.0
[28] and CPLM 2.0 [21]. This benchmark dataset consists of 893 unique
protein sequences with each lysine residue annotated as succinylated
or non-succinylated. Utilising this dataset enabled us to compare our
predictor performance with most of the recent predictors namely SSEvol-
Suc, PSSM-Suc, SucStruct etc., as they had employed the same benchmark
dataset. To reduce bias, we employed CD-Hit program [29] to remove
homologous proteins. CD-Hit reported a maximum pairwise sequence
similarity of 48% where 99% of the succinylation sites were located
in proteins less than 40% similar. By eliminating proteins with more
that 40% pairwise alignment, we reduced the dataset to 665 proteins.
This resulting dataset has very large number of non-succinylated lysine
residues compared to succinylated lysine residues. For comparison, there
is 1,782 succinylated sites (positive set) and 19,614 non-succinylated sites
(negative set). Ratio between positive set to negative set is almost 1:11.
This highly imbalanced dataset was treated with a K-Nearest Neighbour
based balancing scheme discussed in 2.4.

2.2 Model Construction Overview

Traditional experimental detection is costly and time consuming.
Computational approach using machine learning methods have showed to
be a prudent alternative option. We have taken such approach to model our
predictor with all information extracted solely from the protein sequence.
We segmented all protein sequences and each segment was processed
in a feature extraction step. Several position independent features were

Fig. 1: Model construction workflow

extracted directly from the protein segments. These features were used
to balance the highly imbalanced dataset using k-nearest neighbour
cleaning treatment. Position dependent features were extracted from the
balanced dataset which added more sequence information to tackle the
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classification problem. These position dependent features were not used
in KNN balancing as that would introduce high dimensions and would
be computationally expensive. Amino acid composition, n-gram and n-
gapped dipeptide based features were chosen as position independent
features. Among all these features, a subset of most discriminatory features
were sorted out by a 2-step feature selection step. In first step, position
independent feature and Position dependent feature were ranked separately
by Random Forest (RF) algorithm. A subset of each of the two feature type
were picked out based on importance score. In second step, featurespace
comprising the two subset of top-ranked features were merged to make
a hybrid featurespace. Features in this hybrid featurespace were again
ranked by Random Forest algorithm. Another subset of the top-ranked
features were selected based on importance score. Finally, the predictor
was computed by employing a Support Vector Machine (SVM) trained
with the selected top discriminatory features. A diagram of our model
construction is presented in fig.1

2.3 Feature Extraction Method

2.3.1 Sequence Segmentation
Each succinylated and non-succinylated lysine site was described by
sequence based features in this study. Chou’s peptide formulation was
adopted to facilitate description which was widely used for studies such
as enzyme specificity [30], signal peptide cleavage sites [31], protein-
protein interaction [32]. According to Chou’s scheme, a peptide containing
candidate succinylation site can be represented as

Sζ(K) = A−ζ , A−(ζ−1), A−(ζ−2), ..., A−1,K,A1, ..., Aζ−1, Aζ

with lysine(K) in the centre where the subscript ζ is an integer, A−ζ
represents the ζ-th downstream amino acid residue from the center, Aζ is
the ζ-th upstream amino acid residue, and so forth. If the peptide contained
less than ζ amino acids upstream or downstream, the incomplete half was
substituted by mirroring the other half. Thus, each protein in benchmark
dataset can be segmented into peptide sequences with lysine in the center.
Each complete peptide sequence is to be categorized into two classes as:

Sζ(K) ∈
{
S+
ζ (K), if center(K) is a succinylation site
S−
ζ (K), otherwise

Finally, the benchmark dataset can be constructed as:

S = S+
⋃

S−

where S+ contains all S+
ζ (K) peptide sequences and S− contains all

S−
ζ (K) peptide sequences.

The length of a peptide sample is 2ζ+1. For different values of ζ different
lengths of peptide segment will constitute the dataset. In this study, we
have experimented with several lengths for ζ= {5,10,13,15,17,20}. The
best result was achieved for ζ = 20. Since our study showed predictive
improvement with increased length of ζ, it may be argued that a better
performance was achievable for a greater value of ζ. But due to complexity
constraints the study was limited to ζ = 20.

2.3.2 Feature Extraction Technique
We extracted position independent and position dependent features
to capture sequence information. Position independent features are
Amino Acid Composition (AAC), Dipeptides, Tripeptides and n-Gapped-
Dipeptides (nGDip) which is also known as the Gapped Di-peptide
Composition (GDPC). These features are widely used in literature
of proteomic study. Feature types are presented according to the
nomenclature described in S Bernardes et al. [33]. Position specific feature

was first introduced in Rahman et al. [34] and their later works [35] showed
it to be a useful feature in capturing sequence information. Each of these
feature construction technique is briefly described below.

2.3.3 Amino Acid Composition (AAC)
Amino Acid Composition (AAC) is the normalised frequencies of each of
the 20 native α-amino acids in the protein sequence. It can contribute upto
20 features to the feature vector. In our case, we normalised the feature
value by dividing the count of the each amino acid with the length of the
protein segment.

2.3.4 Dipeptides (DIP)
The Dipeptides (Dip) feature refer to the normalized frequency of adjacent
amino acids within the sequence. It can capture some additional sequence
information by contributing upto 400 features to the feature vector.

2.3.5 Tripeptides
Similar to Dip, tripeptide feature refer to the normalised frequency of three
consecutive amino acids within the sequence. It can contribute upto 8000
features to the feature vector.
All these feature types derive from the generalized form of n-grams feature
type where peptides of length n without gaps are considered. In our study,
we extracted n-grams features, for n = 1, 2, 3. Although capturing higher
order n-grams might have provided more sequence order information,
it would have also increased computation complexity by introducing
exponentially larger number of features to the feature vector.

2.3.6 n-Gapped-Dipeptides (nGDip)
The n-Gapped-Dipeptides (nGDip) feature type refers to the normalised
frequency of two amino acids separated by upto n positions. It enables
to represent discontinuous dipeptides. The feature value is normalized by
dividing the count by the total number of possible nGDip with gap n. That
is, for a sequence with length L, a nGDip is normalised by L − n −
1. This can contribute upto 400 dipeptide features for each value of n.
Previous studies showed nGDip to carry significant information [36]. This
also became evident in our future selection step. Although some works
considered one specific gap [37], we incorporated nGDip features for gap
upto windowsize (ζ) of sequence segments. Out of all nGDip features,
we removed those with n=0 from the feature vector as they were already
considered as dipeptide features.

2.3.7 Position Specific Features (PSF)
Position specific features (PSF) or position specific n-grams (PSN) refers
to the occurance of specific n-grams in specific positions in the protein
sequence. PSF value for a certain n-gram can be either 1 (presesnt) or
0 (absent) for a certain position in the sequence. Considering peptides
of length n, there can be upto L × 20n position specific features for a
sequence length of L. However, actual number of PSF features can be
much lower as each possible representation is present . We computed PSF
considering n-grams for n = 1, 2, 3 as considering higher order n-grams
could explode the featurespace. Even then the number of PSF features
was very large. So we considered PSF features beginning inside the first
5 positions of downstream terminus.

Actual number of each type of features extracted from windowsize ζ=
{5,10,13,15,17,20} segmented dataset is presented in the supplementary
materials. Our best performing model trained on ζ=20 windowsized
balanced dataset had 7885 n-gram features, 8000 nGDip features and
13115 PSF features.
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2.4 Dataset Balancing

The benchmark dataset consists of 1,782 succinylated sites (positive set)
and 19,614 non-succinylated sites (negative set). This highly imbalanced
dataset with 1:11 ratio between positive set to negative set could lead
to biased learning. Reducing the class imbalance is an important step
to eliminate bias in supervised machine learning algorithms. Hence,
balancing the positive and negative sets is required. As we have ample
amount of positive samples, oversampling the positive samples to balance
would put enhanced burden on the computation. As such we decided
to undersample the negative set to reduce imbalance. We used KNN-
cleaning treatment method to under-sample dataset to balance. Chou
[38] reintroduced KNN-cleaning treatment method in protein attribute
prediction and it has been widely used in literature since then. KNN
cleaning treatment works as follows.

• Step 1: Computing a distance measure between all the samples in the
benchmark data set is required. In our study, we computed euclidean
distances based on position independent features.

• Step 2: An initial cut-off is calculated by dividing the number of
majority instances and minority instances. In our study, cutoff v=2
was initially set for omitting majority class instances. In simpler terms,
we eliminated a negative sample if one of its 2 nearest neighbors is a
positive sample based on previously calculated euclidean distance.

• Step 3: If imbalance between classes remained after second step, new
threshold is computed by multiplying the initial cut-off with increasing
integer. Then the majority class instances are omitted using newly
computed cut-off. We repeated this step until both sets were almost
similar in size. In our study, we iterated cut-off until threshold of v=42.
That is, we removed negative samples when at least one positive sample
was part of its 42 nearest neighbors. It resulted in a negative dataset of
1688 negative samples out of 19,614 negative samples.

It is worth noting that the minority class instances are not affected by KNN
cleaning treatment and remains same. This algorithm only undersamples
from majority class. This is an order O(N2d) algorithm where N is the
number of data instances and d is the number of dimensions (number of
features). Using all of the features found in feature extraction process
would make the computation significantly time consuming. So only
position independent features were used to calculate nearest neighbours.

2.5 Feature Selection

Employing large number of features to train classifier is computationally
expensive. Moreover, performance of such predictor can be substandard as
all features are not always relevant, as pointed out by a review [39]. So to
develop an well performing predictor, we need to select the most relevant
features that are able to express the intrinsic difference between the regions
of succinylated and non-succinylated lysine. To identify relevant features,
we first filtered the feature space by Random Forrest based feature filtering
step as shown in fig 2. Then we employed a wrapper method to find out a
more relevant subset of features.

2.5.1 Random Forrest Based Feature Filtering Step
Random Forest algorithm can compute importance of features by
permuting out-of-bag estimation. First, it records the out-of-bag estimation
error for each tree. Then, the error is recalculated by varying each variables
of RF. Finally, mean decrease in accuracy is computed by taking average
of difference between two errors over all decision trees and normalising it
with standard deviation of the difference of the errors. Mean decrease in
accuracy value of a feature signifies the feature’s importance. As average
of many trees are taken into consideration in RF algorithm, a single tree in
Random Forest is less likely to considerably impact the prediction and thus

Fig. 2: Random Forrest based Feature Filtering Steps.

decreasing the variance of the model. That in turn leads to more accurate
ranking of the features.

Each protein segment in our dataset is described by 15885 position
independent and 13115 position dependent features, 29000 features in
total. Training a RF model with these many features is computationally
infeasible with our available resources. To scale the high dimensions, we
filtered the features in two steps.

• First Step: We ranked position independent features and position
dependent features separately. We found 9594 position independent
features with positive importance score while rest 6291 position
independent features with mean decrease in accuracy ≤ 0. We also
found 2055 PSF features with positive importance score out of 13115
PSF features. We reduced the size of the both feature space by
discarding the features with non-positive importance score from their
respective feature vectors. Two significantly shortened feature spaces
were found as a resultant.

• Second Step: We need to further investigate the relevancy of position
independent and position dependent features among themselves. To
achieve this, we combined the two future spaces into a hybrid feature
space of total 11649 features. We ranked them using Rf and found 8029
features with positive importance score. We pruned the non-positive
features out of the hybrid feature space. The resultant feature vectors
were utilised in classification model construction.

RF based feature filtering reduced the size of the feature space by 72.3%.
Figure 3 shows the reduction of individual feature types.

2.5.2 SVM Based Wrapper Method
Feature Filtering step finds a good feature subset independent of the
classification model. In contrast, wrapper methods search for a model
hypothesis within the feature subset search. In simpler terms, wrapper
technique is a search procedure in the feature space which generate and
evaluate various feature subsets. In our work, we systematically explored
the feature space and evaluated each feature subset with a Support Vector
Machine(SVM) classifier. Initially a feature matrix with top ranked 100
features was constructed. Then a SVM classifier with unit cost and linear
kernel was trained and tested on those features in accordance with k-fold
cross validation. Then we expanded the feature matrix adding next 100
features in the ranking and similarly evaluated the 200 top ranked feature
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Fig. 3: Retention of individual feature types in filtering steps.(Left) Aggregate importance score of retained features of each type.(Right)

set. We continued this process until we had explored the whole feature
space.

2.6 Experimental Setup & Packages

We conducted our experiments using R language (version 3.5.0) and java.
Two machines were used throughout the study. • A Desktop computer
with Intel Core i7-6500U CPU @ 2.50GHz×4, Windows 10, 64-bit OS
and 8 GB RAM. • A server machine with Intel Xeon CPU E5-4617 0 @
2.90GHz×6, Ubuntu 13.04 64-bit OS, 15 MB L3 cache and 64 GB RAM.

Implementation of K-NN cleaning treatment was done in java. All other
scripts of the experimentation were written in R. Random Forest was used
from the R package randomForest with default parameters. Support Vector
Machine algorithm was used from the R package e1071 with unit cost and
linear kernel. we also used ROCR and pracma packages for performance
analysis of our model and ggplot2 package for plotting graphs. These
packages were installed with all their dependencies in addition to pre-
installed packages.

3 Results & Discussion
Evaluation of the predictor using well established testing methodologies
and expressing its performance in benchmark metrics is instrumental to
introspect its performance. The testing scheme and performance metrics
applied are briefly discussed.

3.1 Testing Methods

There are several well established testing methodologies in the literature,
most notably jackknife or leave-one-out cross validation, n-fold cross-
validation and independent testing. Among them, 10-fold cross validation
has been widely used in validating previous predictors. So we have also
adopted 6,8,10-fold cross validation scheme to choose the model and
conducted independent test results to compare with other state-of-the-art
predictors. At first, We randomly split the dataset into 2 parts– training
set comprising 90% data and testing set comprising rest 10% data. To
conduct n-fold cross validation, the training set is divided into n equal
parts. Among n parts, n-1 parts are used for training the model while the
other one part is used for testing purpose. This process is repeated n times
so that each part is used exactly one time for testing. The dataset can be
partitioned into n parts in many different ways. Difference in partitioning
can cause difference in n-fold cross validation results in each run. As such,
we conducted n-fold cross validation 3 times and reported the average
result. Jackknife test is essentially k-fold cross validation where k is the
number of data instances. So jacknife test requires training the model
k times which can be time consuming. The best performing model on

cross validation was further tested on hold-out 10% independent test data.
Varying the number of features of 6 different window-sized dataset, We
developed 349 SVM models for each of the cross validation scheme.

3.2 Performance Metrics

We analyzed our predictor performance in terms of accuracy, sensitivity,
specificity and Matthew’s correlation coefficient (MCC). These are widely
used performance metrics in literature [40], [41]. We also plotted the
receiver operating characteristic curve (ROC-Curve) and precision-recall
curve (PR-Curve) to visualize the diagnostic ability of our binary classifier.
In classifying the lysine residues into succinylated (positive) or non-
succinylated (negative) class, each sample can be identified as one of the
following cases based on the predicted and actual class of the sample.

• case 1: A positive test sample also predicted as positive is called true
positive.

• case 2: A positive test sample wrongly predicted as negative is called
false negative.

• case 3: A negative test sample wrongly predicted as positive is called
false positive.

• case 4: A negative test sample also predicted as negative is called true
negative.

Assume, the number of true positive, false negative, false positive and
true negative instances in the data is denoted by TP, FN, FP and TN
respectively. Then the relevant performance metrics are expressed as
following equations.

Accuracy = TP+TN
TP+FP+TN+FN

Sensitivity = TP
TP+FN

Specificity = TN
TN+FP

Precision = TP
TP+FP

FalsePositiveRate = FP
FP+TN

MCC = TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Sensitivity = TruePositiveRate(TPR) = HitRate = Recall

FalsePositiveRate = FalseAlarmRate = 1− Specificity
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Top Model Performance
Model Feature space Number of Features Validation Accuracy Sensitivity Specificity MCC AUPR AUROC

PSF 1600
10-CV 0.786 0.866 0.701 0.577 0.848 0.840
Independent 0.778 0.747 0.809 0.557 0.783 0.823

nGrams, nGDip 8200
10-CV 0.883 0.921 0.843 0.768 0.942 0.941
Independent 0.871 0.928 0.811 0.747 0.931 0.933

PSF, nGrams, nGDip 7900
10-CV 0.890 0.928 0.849 0.781 0.946 0.947
Independent 0.873 0.949 0.811 0.758 0.911 0.939

Predictor Performance Comparison
Predictors Accuracy Sensitivity Specificity MCC AUROC
iSuc-PseAAC 0.802 0.507 0.897 0.432 0.782
iSuc-PseOpt 0.874 0.688 0.964 0.708 0.946
pSuc-Lys 0.908 0.768 0.959 0.769 0.932
SucStruct 0.744 0.733 0.755 0.488 0.720
PSSM-Suc 0.819 0.816 0.824 0.639 0.817
SSEvol-Suc 0.875 0.909 0.837 0.750 0.942
Our Predictor(10-CV) 0.890 0.928 0.849 0.781 0.947
Our Predictor(Independent Testing) 0.873 0.949 0.811 0.758 0.938

The receiver operating characteristic curve (ROC-Curve) depicts the
trade off between hit rate and false alarm rate of a classifier. ROC-curve is a
two dimensional graph in which the true positive rate (TPR) or sensitivity
is plotted in Y axis and false positive rate (FPR) is plotted in X axis.
As a ROC-Curve approaches left upper corner of the graph, it indicates
improvement in hit rate and decline of false alarm rate. This increases the
value for area under Roc-curve (auROC) signifying better performance
[42].

The precision recall curve or the PR-curve depicts the the precision
against the recall at various threshold settings. The top right corner of the
graph is the optimum point. The closer the PR-curve is to that point, the
better is the performance. It also increases the value for area under PR-
Curve (auPR). ROC-curve together with PR-curve can accurately assess
predictor performance even if class imbalance is present in the dataset [43].

3.3 Impact of Feature Selection Technique

We emphasized on extracting sequence information as much as possible.
Prior to feature selection, 29000 features described each protein segment.
Certainly all features do not carry same amount of discriminant
information. Some might even be redundant or noisy. In our RF filtering
step (described in 2.5.1), 39.6% position independent features (nGram,
nGDip) and 84.33% PSF features was filtered out. Retained features
have shown to contain some level of relevant information. Now three
experiments were executed to evaluate efficacy of position independent
and position dependent representations separately and in combination.
All three experiments was conducted on same training dataset and
evaluated by 10-fold cross validation. In first experiment, positively
ranked position dependent features were considered. According to the
wrapper method (described in 2.5.2), we developed SVM models with
expanding feature space by 200 features for successive models. Top 1600
features showed to be best position independent representation. In second
experiment position independent features i.e., amino acid composition
(AAC), bigram frequency, trigram frequency and n-gapped dipeptide
(nGDip) features were considered. Similar SVM based wrapper phase
found model developed with top 8200 features to perform best. These two
experiments show that both position dependent and position independent
features are capable to effectively discriminate between succinylation

status of a lysine residue. But Those two types of features do not necessarily
capture same information as their construction procedure is completely
different. So our third experiment focused on their aggregate information.
To access this information, the feature space of previous two experiments
were merged into a hybrid feature space. Since some features might
lose expressiveness in joint space, the hybrid feature space was filtered.
Subsequently, 11649 features were selected by their positive ranking,
pruning out 30.08% features. In SVM based wrapper phase, the entire
feature space was searched thoroughly. The best performing SVM model
suggested the top 7900 features constitute the most comprehensible feature
set.

3.4 Comparison with Current Predictors

We measured the performance of our model in aforementioned metrics
and a comparison with current state-of-the-art predictors is presented in
3. Although the current state-of-the-art predictors provide user friendly
web server, it is not clear which proteins in the CPLM database were
used to train them. Hence, it can be argued that an arbitrary validation set
might not reflect comparative performance. So to eliminate any scepticism,
we compared our results with the self-reported performance of respective
predictors.

An effective predictor must be able to predict both succinylated sites
and non-succinylated sites with high confidence. Evaluating predictor
effectiveness by a single metric like accuracy alone can be deceptive in
this case. Efficient detection of positive case and negative case is more
reliably expressed by true positive rate or sensitivity and true negative rate
or specificity respectively. In such case, area under ROC curve (AUROC) is
a better indicator of general predictive performance [42] while area under
PR curve (AUPR) provide complementary assessment for skewed dataset
[43].

iSuc-PseAAC[18] achieved 89.7% specificity and 50.6% sensitivity.
That means iSuc-PseAAC can detect most of the non-succinylated sites
while it fails to detect roughly half of the succinylated site. A possible
source of this bias might be the imbalance in dataset. its benchmark dataset
consisted of 1167 positive samples and 3553 negative samples. This 3
times larger negative set could have biased the predictor to accurately
classify negative instances in exchange of lowered hit rate. A later work
by Jia et al., iSuc-PseOpt [19] also addressed the same issue and attributed
it to the skewed dataset. To reduce imbalance, iSuc-PseOpt pruned out



“output” — 2019/12/5 — page 7 — #7

short Title 7

Fig. 4: ROC curve (top) and PR-curve (bottom) of some combined featured models, position independent featured models and PSF featured models (left
to right) with varying number of features. The models were generated by 10-fold cross validation.

Fig. 5: ROC curve (top) and PR-curve (bottom) of the top performing combined featured model, position independent featured model and PSF featured
model (left to right) generated by independent testing.

some negative samples using k-nearest neighbour cleaning treatment and
increased positive samples by inserting hypothetical training samples
(IHTS). Then developed the model with exactly balanced dataset. Yet,
iSuc-PseOpt achieved 96.48% specificity while only 68.8% sensitivity
suggesting additional source of bias. Both iSuc-PseAAC and iSuc-PseOpt

segmented 896 proteins into smaller lysine centered sequence of size
15 and 31 respectively. Then they screened these segments with CD-
Hit [29] to prune out samples with significant pairwise identity. CD-Hit
was originally developed to cluster similar or homologous proteins. iSuc-
PseAAC and iSuc-PseOpt did not present any viable intuition behind
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pruning similar samples. However, this step discards important sequence
information that might be intrinsic to lysine succinylated regions by
eliminating segments that are significantly smaller than proteins. In pSuc-
Lys, Jia et al. [20] tried to minimize the bias by adopting an ensemble of
random forests as classifying model. Five balanced dataset were prepared
by combining positive samples with randomly selecting equal number of
negative samples for each dataset. This asymmetric bootstrap approach
along with ensemble algorithm improved the performance of pSuc-Lys.
Still specificity is almost 25% higher than the sensitivity which firmly
suggests a biased learning.

Decision tree based classifier SucStruct [24] used structural
characteristics of peptide sequences as representations. These structural
features were extracted via SPIDER2 tool which uses the sequence
information . On the other hand, PSSM-Suc achieved comparatively
better result by employing evolutionary information through profile
bigrams on PSSM features. Current state-of-the-art predictor SSEvol-Suc
benefited from both structural and evolutionary representation. However,
extracting both structural features and profile bigrams requires calculating
position specific scoring matrix (PSSM) first. PSSM calculation is an
time consuming iterative process. PSI-BLAST (Position-Specific Iterative
Basic Local Alignment Search Tool) derives a position-specific scoring
matrix (PSSM) from the multiple sequence alignment of sequences
detected above a given score threshold. Then the existing PSSM is used
to search the database for new matches and it is updated in subsequent
iterations if new sequences are detected. Accuracy and time requirement
for PSSM generation may vary based on the nature of query proteins
and reference database. For example, a few very large sequences can
take longer than many smaller sequences as PSSM requires obtaining
alignments against sequence databases multiple times [44]. Although the
PSSM generation can be sped up using smaller reference protein set, it is
likely to lose predictive performance in such case [27]. With increasing
number of sequenced proteins in recent year, PSSM driven feature based
prediction will obviously become more complex and resource consuming.

Our predictor exploited solely sequence information and achieved
AUROC value 0.947 and MCC value 0.781 in 10-fold cross validation,
which are highest reported values in respective metrics among other
predictors. Moreover, our model has shown 89% accuracy, 92.8%
sensitivity, 84.9% specificity and 0.946 value for area under precision-
recall curve (AUPR). High values for AUROC and AUPR suggests
unbiased learning. Comparable independent validation performance of
87.3% accuracy, 94.9% sensitivity, 81.1% specificity, 0.76 MCC, 0.94
AUROC and 0.91 AUPR demonstrates the predictor’s high generalization
to new data. This overall performance is as good as any other state-of-the-
art predictors. Such feat can be attributed to,

• Meticulously Balanced dataset with protein homology reduction and
KNN cleaning.

• Extensive extraction of simple features capturing important sequence
information.

• Optimized feature selection retaining relevant sequence information
and rigorous feature space search for most comprehensible
representation.

Our experiments show that, model developed on only position independent
features is better than most current predictors. Combining feature space
with position specific features further pushed the performance. So it is
evident that, position specific features hold some exclusive information
even though they were extracted from relatively smaller region.

4 Conclusion
In this paper, we presented a robust model for effective classification
of lysine succinylation sites. Our predictor exhibited performance
comparable to current state-of-the-art predictors in an unbiased
comparison. our approach has established that sequence information alone
can provide an approximation to discriminant function. Our efforts in
PSF feature extraction on full sample sequences and K-NN cleaning
considering full feature space was limited due to resource constraints.
Nevertheless, this paper presents some prospective view that can be
exploited in future works.
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